Package: Indicator 0.1.2
Gianmarco Borrata
Indicator: Composite 'Indicator' Construction and Imputation Data
Different functions includes constructing composite indicators, imputing missing data, and evaluating imputation techniques. Additionally, different tools for data normalization. Detailed methodologies of 'Indicator' package are: OECD/European Union/EC-JRC (2008), "Handbook on Constructing Composite Indicators: Methodology and User Guide", OECD Publishing, Paris, <doi:10.1787/533411815016>, Matteo Mazziotta & Adriano Pareto, (2018) "Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices" <doi:10.1007/s11205-017-1577-5> and De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs" <doi:10.1007/s11205-010-9727-z>.
Authors:
Indicator_0.1.2.tar.gz
Indicator_0.1.2.zip(r-4.5)Indicator_0.1.2.zip(r-4.4)Indicator_0.1.2.zip(r-4.3)
Indicator_0.1.2.tgz(r-4.4-any)Indicator_0.1.2.tgz(r-4.3-any)
Indicator_0.1.2.tar.gz(r-4.5-noble)Indicator_0.1.2.tar.gz(r-4.4-noble)
Indicator_0.1.2.tgz(r-4.4-emscripten)Indicator_0.1.2.tgz(r-4.3-emscripten)
Indicator.pdf |Indicator.html✨
Indicator/json (API)
NEWS
# Install 'Indicator' in R: |
install.packages('Indicator', repos = c('https://gianmarcoborrata.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gianmarcoborrata/indicator/issues
- Education - Education
Last updated 5 months agofrom:bf49216372. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-win | OK | Nov 10 2024 |
R-4.5-linux | OK | Nov 10 2024 |
R-4.4-win | NOTE | Nov 10 2024 |
R-4.4-mac | NOTE | Nov 10 2024 |
R-4.3-win | NOTE | Nov 10 2024 |
R-4.3-mac | NOTE | Nov 10 2024 |
Exports:columns_with_nancompute_CIgeometric_aggregationget_all_performanceget_all_performance_bootJevons_aggregationlinear_aggregationlinear_aggregation_AMPIlinear_aggregation_MPIlm_imputationMADmin_maxmin_max_GMnormalization_abov_below_meanpca_weightingperformance_nan_imputationrank_aggregationrank_normalisationstandardizationStandardization_AMPIstandardization_MPI
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDatacliclustercolorspacecowplotcpp11crosstalkDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluateFactoMineRfansifarverfastmapflashClustfontawesomeFormulafsgenericsggplot2ggrepelgluegtablehighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamissMethodsmodelrmultcompViewmunsellmvtnormnlmenloptrnnetnormnumDerivpbkrtestpillarpkgconfigpromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml